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Abstract--The relaxation equation of heat conduction and generation is solved by method of Laplace 
transforms for the case of a semi-infinite body and an arbitrary dependence of the surface temperature on 
time. For the case of equality of the relaxation time of the heat flux (Zk) and the relaxation time of the 
internal heat source capacity (zg) the Laplace domain solution is inverted analytically, otherwise numeri- 
cally. Exemplary calculations are carried out for the surface temperature function in the form of a 
rectangular pulse. The results show that significant differences can occur between the relaxation and 
parabolic models, in qualitative as well as quantitative terms, which do not disappear for large times. A 
long-time relaxation solution for z~ = 0 tends to overlap with the corresponding parabolic solution of a 
case with heat generation, whilst a long-time relaxation solution for zg = oo tends to overlap with the 

corresponding parabolic solution of a case without heat generation. 

1. INTRODUCTION 

Transport  and generation of  heat is subject to the 
phenomenon of relaxation, namely a change in tem- 
perature gradient does not  cause an instantaneous, 
corresponding change in heat flux, and, in the case of  
an internal heat source whose capacity depends on 
temperature, a change in temperature is not  immedi- 
ately followed by a corresponding change in source 
capacity. In most engineering applications the relax- 
ation stage of  thermal processes can be neglected. 
However,  especially in highly transient heat transfer 
processes, such as laser pulse heating, the relaxation 
effects can play an important  role. 

In general, any relaxation process can be described 
by a simple exponential model  

~R~ 

where R is the quantity subject to relaxation, and tr is 
the relaxation time, representing a finite response time 
of  the system. Subscripts t and s denote the transient 
and steady state value of  R, respectively. For  
R~ = Ro = const and R t ( 0  ) = 0, the solution of  equa- 
tion (1) is the function 

Rt == Ro [1 -- exp (--  t/tr)] (2) 

which is plotted in Fig. 1. Solution (2) and Fig. 1 
illustrate the property of  the model  given by equation 
(1): Rt approaches Rs over a period of  time. A measure 
of  the delay of  R, in relation to Rs is the relaxation 
time, G. As tr tends to zero Rt tends to Rs. 

As a matter of  fact, the classical Fourier  law in the 
form 

q = - k V T  (3) 

should only be used for modelling steady heat con- 
duction. However, the parabolic equation of  heat con- 
duction 

t3T aV 2 T +  g (4) 
~t pep 

which is used to describe both transient and steady 
heat conduction, was formed by combining equation 
(3) and the energy conservation equation 

~T 
pc~ 7 7  = - v .  q + g .  (5) 

Because of  this, the parabolic equation of  heat con- 
duction predicts an infinite speed of  heat propagation,  
i.e. a thermal disturbance at any point in a body is 
immediately felt at every other point in the body. To 
bring in a finite speed of  heat propagation,  Cattaneo 
[1] suggested the following modification of  Fourier 's  
law 

tk ~ + q = - kV T. (6) 

Equation (6) can be interpreted as an application 
of  the relaxation model given by equation (1) to heat 
flux. The elimination of  the heat flux vector, q, 
between equations (5) and (6) results in the well- 
known hyperbolic equation of  heat conduction [1, 2] 
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NOMENCLATURE 

a thermal diffusivity, k/(pcp) 
Cp specific heat at constant pressure 
C. coefficient of odd-sine series 
d arbitrary constant 
g capacity of internal heat source 

(steady) 
gt transient capacity of internal heat 

source 
I1 modified Bessel function, 1 st order 
k thermal conductivity 
2-0 Laplace operator 
q heat flux vector 
R quantity subject to relaxation 
s Laplace variable 
t time 
tk relaxation time of heat flux 
tg relaxation time of heat source capacity 
tr relaxation time 
T temperature 
To reference temperature 
w speed of heat propagation, (a/tk)l/2 
x,y,  Z Cartesian coordinates 
X, Y, Z dimensionless Cartesian 

coordinates. 

Greek symbols 
c~ constant coefficient 
0 dimensionless temperature 
0i amplitude of thermal pulse 
0~(r) dimensionless surface temperature 
0 transformed dimensionless 

temperature 
p density 
cr arbitrary constant coefficient 
r dimensionless time 
rg dimensionless relaxation time of heat 

source capacity, tu/(2tk ) 
~i dimensionless duration of thermal 

pulse 
zk dimensionless relaxation time of heat 

flux, 0.5 
~b dimensionless capacity of internal heat 

source (steady) 
~ dimensionless transient capacity of 

internal heat source. 

Superscript 
transformed variable. 

Rt 
R, 

°.832R° Iy  

tr t 

Fig. 1. Transient value R t of a quantity R subject to relaxation 
for Rs in the form of step function. 

0 2_ T DT= aV 2T_l_ tk +g  
t~ ~t  2 + ~- -~ (7) 

Og, 
tg ~ q-gt = g. (8) 

Equation (8) is also based on the relaxation model 
given by equation (1). It is seen that gt is related 
with g in the same way as R, with Rs. An engineering 
example of a heat source the capacity of which shows 
a relaxation behaviour is the ohmic heat source in a 
conductor carrying an electric current. A change in 
temperature of the conductor causes a corresponding 
change in its resistivity, thus a change in the capacity 
of the source. The source reaches the capacity cor- 
responding to the change in temperature over a period 
of time. 

The set composed of equation (5), in which g is 
replaced by gt, equation (6) and equation (8) con- 
stitutes the relaxation model of heat conduction and 
generation. This set can be reduced to the following 
relaxation equation of heat conduction and gen- 
eration [3] 

which transmits waves of temperature with a finite 
speed w= (alto) m. Though equation (7) takes 
account of the relaxation of heat flux, it neglects the 
relaxation of the heat source capacity as in equation 
(5) g represents the steady state value of the heat 
source capacity. To eliminate this inconsistency, Mal- 
inowski [3] introduced the notion of transient capacity 
of the heat source. The transient capacity of the 
source, gt, is defined by 

O3T D2T DT 
tk(a~t3 +(tk+tg)~t2 + a~ 

tga~tV2T+aV2T+ 1 ( ~tt ) = - -  tk + g .  (9) pcp 

The hyperbolic equation of heat conduction given 
by equation (7) and the parabolic equation of heat 
conduction given by equation (4) are special cases of 
equation (9) for tg = 0 and tg = tk = 0, respectively. 
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Equation (9) can be transformed into the following 
dimensionless form [4] : 

930 (2.c~ + 1) 920 90 
z~ 9~ ~ + ~.S + 2 

9 2 2 9~0 
= cg~V 0+V 0 + 2 ~ - + 4 f f ,  (lO) 

where 0 = T/To is dimensionless temperature, 
= t/(2tk) is dimensionless time, ~g = tg/(2tk) is the 

dimensionless relaxation time of the heat source 
capacity, X = wx/(2a),  Y = wy/(2a),  Z = wz/(2a) are 
the dimensionless Cartesian coordinates, and 
tp = gtk/(pcoTo) is the dimensionless (steady) capacity 
of the internal heat source. 

The parabolic, hyperbolic and relaxation equations 
of heat conduction given by equations (4), (7), (9) 
and (10), respectively, have been derived on the 
assumption that the thermophysical properties are 
constants. 

Several special cases of equation (10) have been 
studied analytically and numerically by Malinowski 
[3 7]. In ref. [3] he solved analytically a one-dimen- 
sional case for a ,;tep change in temperature at the 
surface, the ratio of relaxation times (tg/tk) equal to 
unity, and a line~x dependence of the heat source 
capacity on temperature (~O ~ 0). In ref. [4] he studied 
analytically a number of zero-dimensional cases for 
various expressions for heat source capacity. He also 
discussed the physical sense of the relaxation model 
there. In ref. [5] he presented an analytical solution 
for a one-dimensional case, in which the relaxation of 
heat flux is neglected, for a step change in temperature 
at the surface, various values of tg/tk, and ~, ~ 0. In 
ref. [6] he analysed numerically the temperature field 
in the semi-infinite body due to a step change in heat 
flux at the surface for various values of tg/tk, and 

~ 0. In ref. [7] he studied numerically the evolution 
of normal zones in a composite superconductor after 
instantaneous dissipation of a finite amount of energy 
in the conductor. The calculations were performed for 
a one-dimensional model, a non-linear dependence of 
the heat source capacity on temperature, and various 
values of tg/tk. 

In this paper we solve the relaxation equation of 
heat conduction and generation by method of Laplace 
transforms for the case of a semi-infinite body, an 
arbitrary dependence of the surface temperature on 
time, and a linear dependence of the heat source 
capacity on temperature. For t~/tk = 1 the solution in 
the Laplace domain is inverted analytically, otherwise 
numerically. 

2. MATHEMA'rlCAL FORMULATION OF THE 
PROBLEM 

For a linear dependence of heat source capacity on 
temperature given by the following: 

qJ = s0 (11) 

a one dimensional case of equation (10) is 

930 (2rq+l)  020 + 2 ( 1 - ~ ) 9 0  
"c~, 9T  + 9r ~ 9~- 

930 920 
= rg 9z aX ~ - ~ -  + ~ +4~0. (12) 

The initial conditions for the present problem are 

O(X, 0) = 0 (13a) 

00 
(X, 0) = 0 (13b) 

020 
~ T  2 (X, 0) = 0. (13c) 

The boundary conditions are 

0(0, T) = 0s(z) (14a) 

0(~ ,  ~) = 0. (14b) 

3. ANALYTICAL SOLUTION 

3.1. Relaxation model 
The Laplace transform of equation (12) including 

the initial conditions given by equations (13) is 

d20(X's) bO(X,s) = 0, (15) 
d X  2 

where 

O(X, s) = Le[O(X, T)] (16a) 

b = s 2 + 2 s - 2 ~ ( s + 2 ) / ( Z g S +  1). (16b) 

The transformed boundary conditions (14) are 

0(0, s) -- 0s(s) (17a) 

0(or, s) = 0. (17b) 

The solution of equation (15) satisfying boundary 
conditions (17) is the function 

O(x, s) = O,(s)f~ (x, s), (18) 

where 

]'1 (X, s) = exp ( - Xx/b ) . (19) 

For Zg = 0.5, or tk = tg, equation (16b) reduces to 

b = s z + 2 s -  4~. (20) 

For b given by equation (20) we can invert solution 
(18) analytically. First, we determinef~ (X, z) with the 
help of the Laplace-transform tables included in ref. 
[8]. The procedure employed is the same as that used 
and described in ref. [3]. Next, we make use of the 
convolution theorem. After some manipulations we 
arrive at: 
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f o r r < X  

O(X, T) = 0 (21a) 

f o r T >  X 

O(X, r) = exp ( - X ) O d T - X )  +X(1 +4~) ~/2 

f~ {[( 
x O~(r-e) exp (--  e`)l, 1 + 4~)(e` 2 -X~) ]  ,/2} 

X (e,2 _ X 2 ) - 1 / 2  de,. (21b) 

3.2. Parabolic' model 
For the parabolic case equation (12) reduces to 

00 020 
2 &-r = - -  + 4aO. (22) OX 2 

The Laplace transformation of equation (22) with 
regard to the initial condition given by equation (13a) 
has the same form of equation (15) as the trans- 
formation of the relaxation equation (12). But in this 
case the coefficient b is expressed as 

b = 2 ( s -  2~). (23) 

For the parabolic model, the solution of equation 
(15) with the boundary conditions (17) also has the 
form of equation (18). Making use of the Laplace- 
transform tables [8] and the convolution theorem, we 
obtain for X > 0 the following time domain solution 
to the parabolic boundary value problem given by 
equations (22), (13a) and (14) 

O(X, r) = X O~(r-e,) exp [2c~e,-X2/(2e,)] 

x (2xe 3) ,,,2 de,. (24) 

4. SEMI-ANALYTICAL SOLUTION OF 
RELAXATION MODEL 

We invert numerically the solution in the Laplace 
domain given by equation (18) for b given by equation 
(16b) and for 0s(r) defined as follows: 

0 ~ ( 0 = { ~  i for for r0~r<r~>ri (25) 

The Laplace-transformed equation (25) is 

0s(S) = 0~ [1 - exp ( -  rd)]. (26) 

We use the method proposed by Papoulis [9]. This 
method depends on introducing the new independent 
variable fl, defined by cos fl = exp ( - a T ) ,  into the 
original function, followed by an expansion of the 
original function into an odd-sine series. According 
to this method the numerical evaluation of O(X, ~) can 
be determined from the following partial series: 

N 
O(X, r) "~ exp ( -- dO Z C,, 

n=0 

where 

4 . +  i 
C n = 

x sin { (2n + 1) arccos [exp ( -  o'r)] }, (27) 

_ ",,~' 2 i+1  ( 2 n +  1) ! 
~O(X,s,)--i~ ° ~ ]  (n+i+l ) ! (n - - i )  C, 

(28) 

& = d +  (2n+ 1)m (29) 

Original function O(X, T) is determined in terms of 
the values of the transformed function O(X,s) on a 
sequence of N +  1 equidistant points s, given by equa- 
tion (29). As N tends to infinity, the right hand side 
of equation (27) tends to O(X, r). d a n d  a are arbitrary 
constants. The value of cr depends on the time interval 
in which O(X, r) has to be best described. Since for 
r --+ 0 s --+ Go, and for T --+ oo s --+ 0, for small values of 
r a large value of ~r should be chosen, whereas for 
large values of z the value of a should be small. The 
constant d must be sufficiently large so that the trans- 
formed function O(X, s) should exist for points s,. 

5. RESULTS AND DISCUSSION 

Using solutions (21), (24) and (27), for 0s(T) given 
by equation (25), we calculated a number  of values of 
O(X, r) in order to examine temperature distributions 
in the body. Solutions of the parabolic case are 
employed for the purpose of comparison as well as to 
verify the numerical method of inversion of Laplace 
transforms. The computations were performed in 
extended precision arithmetics with 19 20 significant 
digits, which enabled us to employ 25 terms in the 
partial sum given by equation (27). The results of 
calculations are presented in Figs. 2-6. In Figs. 2, 3 
and 6 the relaxation solutions are accompanied by 
two parabolic solutions. The upper dashed line is the 
parabolic solution corresponding to the relaxation 
solutions. The lower dashed line represents the para- 
bolic solution for ~, = 0. These two parabolic solu- 
tions can be considered to be limiting cases for the 
long-time relaxation solutions for rg = 0 and rg = ao, 
respectively (see Fig. 6). The reasons for this are as 
follows. For large times the wave character of relax- 
ation solutions decays. Furthermore,  when T u --+ 0 the 
effect of the heat source inertia on the temperature 
field becomes negligible, and when Tg --+ oo the tran- 
sient capacity of the source, G, tends to zero. 

Figure 2 gives the profiles of dimensionless tem- 
perature in the body at three dimensionless times of 
z = 2, 4 and 8. By comparison, the dimensionless 
relaxation time of heat flux T~ = 0.5. It is seen that 
the relaxation solutions are of the wave nature. The 
energy of the thermal pulse, at first concentrated at 
the wavefront, dissipates in the body as the front 
moves. As the time passes the wave character of relax- 
ation solutions vanishes. For  T = 8 (Fig. 2c) the shape 
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Fig. 2. Dimensionless temperature distribution obtained with 
analytical solutions fi)r three times: (a) r = 2; (b) • = 4; (c) 

• = 8.0~ = 2, ~ = 1, c~ = 0.1. 
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Fig. 3. Dependence of dimensionless temperature on dimen- 
sionless time obtained with analytical solutions lor three 
dimensionless coordinates: (a) X = 1, (b) X = 3, (c) X = 6. 

Oi=2, 'Ci  = l ,  C~ = 0 . 1 .  

of  the re laxat ion temperature  profile does  not  vary a 
lot from the shape  o f  the parabol ic  profiles. 

S h o w n  in Fig.  3 are the dependencies  o f  the d imen-  
s ionless  temperature  on the d imens ionless  t ime at 
three points  on  the axis o f  X = 1, 3 and  6. In the case 
o f  the parabol ic  sol utions we  observe an ins tantaneous  
rise in temperature  at each o f  these points  after a 

temperature pulse  has been imposed  at the boundary ,  
whereas  in the case  o f  the re laxat ion solut ion,  at each 
o f  these po ints  the temperature  j u m p s  from zero to a 
finite value after a de lay  resulting from a finite velocity  
o f  the heat  wave .  The wavefront  reaches po int  x = xf 
after t ime tf = xdw, thus Xf = xf. 
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3- 

Fig. 4. Comparison of analytical solutions and solutions 
achieved by the numerical Laplace inversion for the para- 

bolic case. 0~ = 2, z~ = I, ~ = 0.1, d = 0.15, a = 0.2. 
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Fig. 5. Comparison of analytical solutions and solutions 
achieved by the numerical Laplace inversion for the relax- 
ation case. 0i = 2, v~ = 2, v q = 0.5, a = 0.1, d = 0.15, a = 0.2. 

Figures 4 and  5 display the compar i son  of  the ana- 
lytical results with  the results achieved by the numeri-  
cal inversion of  Laplace t ransforms.  The numerical  
calculat ions were performed for N = 24, d = 0.15 and  
a = 0.2. Fo r  the parabol ic  model  (Fig. 4) the agree- 
ment  is very good. In the case of  the relaxat ion model  
(Fig. 5) some oscillations of  the numerical  solutions 
are seen. These oscillations are smaller for points  more  
dis tant  f rom the surface of  the body  (see also Fig. 6). 
However,  considering the wave nature  of  the relax- 
a t ion solutions,  the approximat ions  obta ined can be 
est imated as good. 

Figure 6 shows the dimensionless tempera ture  at  
point  X = 6 as a funct ion of  dimensionless t ime for 
z~ = 0.01, 0.5, 2 and  100. Fo r  Zg = 0.5 there are two 
solutions: analytical  given by a solid line and  numeri-  
cal represented by crosses. Fo r  other  values of  zg the 
solutions are numerical.  It is seen tha t  for large t imes 
the relaxat ion solut ion for zg = 0.01 lies in the prox-  
imity of  the parabol ic  solution of  a case with heat  

0.3  

relaxation I /  
paroboUc / / 

. . . .  parabolic "~=0 c~ / /  
x x x x x  numerical  inversion o" • / ~ o / '  =. . j /  

0.2 

0.1 

/ 

j /  _ - - -  . . . . . . .  

0 . 0  : . . . . .  i =: = ~  ~ 2  ; , I I 
0 2 4 6 8 10 12 14 

3- 

Fig. 6. Dependence of dimensionless temperature on dimen- 
sionless time for X = 6 and for four dimensionless times of 
heat source capacity. The curve Zg = 0.5 is an analytical 
solution, while the curves ~g = 0.01, 2 and 100 are solutions 
obtained with the numerical Laplace inversion. The crosses 
represent a numerical solution for ~g = 0.5. 0i = 1, v~ = 3, 

= 0.1, d =  0.15, a = 0.15. 

generat ion,  while the re laxat ion solution for zg = 100 
lies in the proximity of  the parabol ic  solution of  a case 
wi thout  heat  generat ion.  The differences between the 
re laxat ion solutions and  the related parabol ic  solut ion 
(upper  dashed line) do not  decrease for large times, 
which results f rom the cumula t ion  of  the effect of  the 
heat  source inertia. 

6. CONCLUDING REMARKS 

The hyperbolic  equa t ion  of  heat  conduc t ion  is 
based on a simple, exponent ia l  model  of  the heat  flux 
relaxation. The same exponential  model  can be 
employed to describe the relaxat ion of  the internal  
heat  source capacity. As a result we obta in  a more  
general re laxat ion equa t ion  of  heat  conduct ion  and  
generat ion,  which for special cases reduces to the 
hyperbolic  or parabol ic  equa t ion  of  heat  conduct ion.  

A characterist ic  feature of  many  hyperbolic  solu- 
t ions is tha t  they tend to approach  the cor responding  
parabol ic  solutions at  the limit. In  the case of  relax- 
a t ion solutions the differences between them and  the 
related parabol ic  solutions do not  vanish as t ime rises 
to infinity. This results f rom the cumula t ion  of  the 
effect of  the internal  heat  source inertia. 

Each relaxat ion solution is related to two charac-  
teristic parabol ic  solutions. The first of  them is the 
solut ion for the heat  source capacity equal  to zero, 
the second one is the solution for the heat  source 
capacity equal  to its steady state value. These two 
parabol ic  solutions border  the region in which long- 
t ime relaxat ion solutions,  for various values of  the 
dimensionless re laxat ion t ime o f  heat  source capacity 
(zg), are situated. W h e n  z~ changes f rom zero to infin- 
ity the relaxat ion solut ion moves  f rom the parabol ic  
solut ion for a case with heat  generat ion towards  the 
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parabol ic  solut ion fi~r a case wi thou t  heat  generat ion.  
This results directly from the features of  the re laxat ion 
model  of  the source',, as for zg = 0 the source has no  
inertia,  and  for Zg = ~ the t ransient  capacity of  the 
source equals zero. 
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